Tuesday 10 May 2011

Antivirus

Antivirus or anti-virus software is used to prevent, detect, and remove computer viruses, worms, and trojan horses. It may also prevent and remove adware, spyware, and other forms of malware. This page talks about the software used for the prevention and removal of such threats, rather than computer security implemented by software methods.

              A variety of strategies are typically employed. Signature-based detection involves searching for known patterns of data within executable code. However, it is possible for a computer to be infected with new malware for which no signature is yet known. To counter such so-called zero-day threats, heuristics can be used. One type of heuristic approach, generic signatures, can identify new viruses or variants of existing viruses by looking for known malicious code, or slight variations of such code, in files. Some antivirus software can also predict what a file will do by running it in a sandbox and analyzing what it does to see if it performs any malicious actions.

             No matter how useful antivirus software can be, it can sometimes have drawbacks. Antivirus software can impair a computer's performance. Inexperienced users may also have trouble understanding the prompts and decisions that antivirus software presents them with. An incorrect decision may lead to a security breach. If the antivirus software employs heuristic detection, success depends on achieving the right balance between false positives and false negatives. False positives can be as destructive as false negatives. Finally, antivirus software generally runs at the highly trusted kernel level of the operating system, creating a potential avenue of attack.
Here u can find a complete list of antivirus software with comaprisons
http://en.wikipedia.org/wiki/List_of_antivirus_software


There are several methods which antivirus software can use to identify malware.
           Signature based detection is the most common method. To identify viruses and other malware, antivirus software compares the contents of a file to a dictionary of virus signatures. Because viruses can embed themselves in existing files, the entire file is searched, not just as a whole, but also in pieces.

           Heuristic-based detection, like malicious activity detection, can be used to identify unknown viruses.
           File emulation is another heuristic approach. File emulation involves executing a program in a virtual environment and logging what actions the program performs. Depending on the actions logged, the antivirus software can determine if the program is malicious or not and then carry out the appropriate disinfection actions.
               Signature based detection Traditionally, antivirus software heavily relied upon signatures to identify malware. This can be very effective, but cannot defend against malware unless samples have already been obtained and signatures created. Because of this, signature-based approaches are not effective against new, unknown viruses.
               As new viruses are being created each day, the signature-based detection approach requires frequent updates of the virus signature dictionary. To assist the antivirus software companies, the software may allow the user to upload new viruses or variants to the company, allowing the virus to be analyzed and the signature added to the dictionary.
              Although the signature-based approach can effectively contain virus outbreaks, virus authors have tried to stay a step ahead of such software by writing "oligomorphic", "polymorphic" and, more recently, "metamorphic" viruses, which encrypt parts of themselves or otherwise modify themselves as a method of disguise, so as to not match virus signatures in the dictionary.

            Heuristics Some more sophisticated antivirus software uses heuristic analysis to identify new malware or variants of known malware.

             Many viruses start as a single infection and through either mutation or refinements by other attackers, can grow into dozens of slightly different strains, called variants. Generic detection refers to the detection and removal of multiple threats using a single virus definition.

                For example, the Vundo trojan has several family members, depending on the antivirus vendor's classification. Symantec classifies members of the Vundo family into two distinct categories, Trojan.Vundo and Trojan.Vundo.B.
          While it may be advantageous to identify a specific virus, it can be quicker to detect a virus family through a generic signature or through an inexact match to an existing signature. Virus researchers find common areas that all viruses in a family share uniquely and can thus create a single generic signature. These signatures often contain non-contiguous code, using wildcard characters where differences lie. These wildcards allow the scanner to detect viruses even if they are padded with extra, meaningless code. A detection that uses this method is said to be "heuristic detection."
             Rootkit detection Main article: Rootkit Anti-virus software can also scan for rootkits; a rootkit is a type of malware that is designed to gain administrative-level control over a computer system without being detected. Rootkits can change how the operating system functions and in some cases can tamper with the anti-virus program and render it ineffective. Rootkits are also difficult to remove, in some cases requiring a complete re-installation of the operating system.

Issues concerning Antivirus softwares

Unexpected renewal costs        
         Some commercial antivirus software end-user license agreements include a clause that the subscription will be automatically renewed, and the purchaser's credit card automatically billed, at the renewal time without explicit approval. For example, McAfee requires users to unsubscribe at least 60 days before the expiration of the present subscription while BitDefender sends notifications to unsubscribe 30 days before the renewal. Norton Antivirus also renews subscriptions automatically by default.

Rogue security applications 
          
           Some apparent antivirus programs are actually malware masquerading as legitimate software, such as WinFixer and MS Antivirus. Problems caused by false positives                      
              A "false positive" is when antivirus software identifies a non-malicious file as a virus. When this happens, it can cause serious problems. For example, if an antivirus program is configured to immediately delete or quarantine infected files, a false positive in a essential file can render the operating system or some applications unusable. In May 2007, a faulty virus signature issued by Symantec mistakenly removed essential operating system files, leaving thousands of PCs unable to boot. Also in May 2007 the executable file required by Pegasus Mail was falsely detected by Norton AntiVirus as being a Trojan and it was automatically removed, preventing Pegasus Mail from running. Norton anti-virus has falsely identified three releases of Pegasus Mail as malware, and would delete the Pegasus Mail installer file when this happens. In response to this Pegasus Mail stated:

“ On the basis that Norton/Symantec has done this for every one of the last three releases of Pegasus Mail, we can only condemn this product as too flawed to use, and recommend in the strongest terms that our users cease using it in favour of alternative, less buggy anti-virus packages. ” In April 2010 McAfee VirusScan detected svchost.exe, a normal Windows binary, as a virus on machines running Windows XP with Service Pack 3, causing a reboot loop and loss of all network access.

In December 2010, a faulty update on the AVG anti-virus suite damaged 64-bit versions of Windows 7, rendering it unable to boot, due to an endless boot loop created.
               When Microsoft Windows becomes damaged by faulty anti-virus products, fixing the damage to Microsoft Windows incurs technical support costs and businesses can be forced to close whilst remedial action is undertaken.

System and interoperability related issues     
               Running multiple antivirus programs concurrently can degrade performance and create conflicts. However, using a concept called multiscanning, several companies (including OPSWAT, G Data and Microsoft) have created applications which can run multiple engines concurrently.
             It is sometimes necessary to temporarily disable virus protection when installing major updates such as Windows Service Packs or updating graphics card drivers. Active antivirus protection may partially or completely prevent the installation of a major update.

                   Support issues also exist around antivirus application interoperability with common solutions like SSL VPN remote access and network access control products. These technology solutions often have policy assessment applications which require that an up to date antivirus is installed and running. If the antivirus application is not recognized by the policy assessment, whether because the antivirus application has been updated or because it is not part of the policy assessment library, the user will be unable to connect. Interoperability testing and certification for antivirus applications is offered by the OESIS OK Program.

Effectiveness Studies in December 2007 showed that the effectiveness of antivirus software had decreased in the previous year, particularly against unknown or zero day attacks. The computer magazine c't found that detection rates for these threats had dropped from 40-50% in 2006 to 20-30% in 2007. At that time, the only exception was the NOD32 antivirus, which managed a detection rate of 68 percent.

The problem is magnified by the changing intent of virus authors. Some years ago it was obvious when a virus infection was present. The viruses of the day, written by amateurs, exhibited destructive behavior or pop-ups. Modern viruses are often written by professionals, financed by criminal organizations.

Independent testing on all the major virus scanners consistently shows that none provide 100% virus detection. The best ones provided as high as 99.6% detection, while the lowest provided only 81.8% in tests conducted in February 2010. All virus scanners produce false positive results as well, identifying benign files as malware.

Although methodologies may differ, some notable independent quality testing agencies include AV-Comparatives, ICSA Labs, West Coast Labs, VB100 and other members of the Anti-Malware Testing Standards Organization.

New viruses Most popular anti-virus programs are not very effective against new viruses, even those that use non-signature-based methods that should detect new viruses. The reason for this is that the virus designers test their new viruses on the major anti-virus applications to make sure that they are not detected before releasing them into the wild.

Some new viruses, particularly ransomware, use polymorphic code to avoid detection by virus scanners. Jerome Segura, a security analyst with ParetoLogic, explained:

“ It's something that they miss a lot of the time because this type of [ransomware virus] comes from sites that use a polymorphism, which means they basically randomize the file they send you and it gets by well-known antivirus products very easily. I've seen people firsthand getting infected, having all the pop-ups and yet they have antivirus software running and it's not detecting anything. It actually can be pretty hard to get rid of, as well, and you're never really sure if it's really gone. When we see something like that usually we advise to reinstall the operating system or reinstall backups. ” A proof of concept malware has shown how new viruses could use the Graphics Processing Unit (GPU) to avoid detection from anti-virus software. The potential success of this involves bypassing the CPU in order to make it much harder for security researchers to analyse the inner workings of such malware.

Rootkits

                      The detection of rootkits are a major challenge for anti-virus programs. Rootkits are extremely difficult to detect and if undetected, rootkits have full administrative access to the computer and are invisible to users, so that they will not be shown in the list of running processes in the task manager. Rootkits can modify the inner workings of the operating system and tamper with antivirus programs.

So the best way is to use only the known and best used antivirus in the market and update it regularly

No comments:

Post a Comment